Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Res ; 34(3): 245-257, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38302740

RESUMO

Mutations in the orphan transporter MFSD7c (also known as Flvcr2), are linked to Fowler syndrome. Here, we used Mfsd7c knockout (Mfsd7c-/-) mice and cell-based assays to reveal that MFSD7c is a choline transporter at the blood-brain barrier (BBB). We performed comprehensive metabolomics analysis and detected differential changes of metabolites in the brains and livers of Mfsd7c-/-embryos. Particularly, we found that choline-related metabolites were altered in the brains but not in the livers of Mfsd7c-/- embryos. Thus, we hypothesized that MFSD7c regulates the level of choline in the brain. Indeed, expression of human MFSD7c in cells significantly increased choline uptake. Interestingly, we showed that choline uptake by MFSD7c is greatly increased by choline-metabolizing enzymes, leading us to demonstrate that MFSD7c is a facilitative transporter of choline. Furthermore, single-cell patch clamp analysis showed that the import of choline by MFSD7c is electrogenic. Choline transport function of MFSD7c was shown to be conserved in vertebrates, but not in yeasts. We demonstrated that human MFSD7c is a functional ortholog of HNM1, the yeast choline importer. We also showed that several missense mutations identified in patients exhibiting Fowler syndrome had abolished or reduced choline transport activity. Mice lacking Mfsd7c in endothelial cells of the central nervous system suppressed the import of exogenous choline from blood but unexpectedly had increased choline levels in the brain. Stable-isotope tracing study revealed that MFSD7c was required for exporting choline derived from lysophosphatidylcholine in the brain. Collectively, our work identifies MFSD7c as a choline exporter at the BBB and provides a foundation for future work to reveal the disease mechanisms of Fowler syndrome.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Síndrome do Ovário Policístico , Transtornos Urinários , Animais , Humanos , Camundongos , Transporte Biológico , Encéfalo , Colina
2.
Curr Pharm Des ; 22(23): 3608-18, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27093955

RESUMO

BACKGROUND: Metabolic syndromes such as insulin resistance, type 2 diabetes and obesity share common pathogenic pathways with some age-related neurodegenerative disorders. Impaired insulin signaling, inflammation, mitochondrial dysfunction and ER stress can be both causatives and consequences in both groups of the diseases. Patients with chronic metabolic disorders therefore have potential risks to develop neurological diseases in late-age phase and vice versa those who with neurodegenerative diseases also have impairments in metabolic signaling. METHOD: In this review, we summarize about the interrelation between pathogenic pathways, common drug targets as well as known and developing therapeutics for these "modern" diseases. RESULTS: There are conventional medicines for insulin resistance associated metabolic disorders such as insulin analogues, insulin sensitizers and ER stress releasers which have been suggested in the treatments of some neurodegenerative diseases. Some used or tested therapeutics such as bromocriptine, memantine and α-2A adrenergic antagonists for Parkinson's and Alzheimer's diseases, vice versa, were promisingly shown as alternative or complementary drugs for metabolic syndromes. CONCLUSION: Therefore, it is important and possible to consider contemporary control and intervention for both diseases.


Assuntos
Doenças Metabólicas/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Humanos
3.
Springerplus ; 3: 380, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25133088

RESUMO

PTP1B is a prototypic enzyme of the superfamily protein tyrosine phosphatases (PTPs) which are critical regulators of tyrosine phosphorylation-dependent signaling events. It is a highly plausible candidate for designing therapeutic inhibitors of obesity and type 2 diabetes (T2D). In this study, a detailed comparative analysis to reveal the evolutionary relationship of human PTP1B among related vertebrates has been addressed. The phylogenetic trees were constructed with maximum likelihood algorithm by PhyML package on the basis of multiple sequence alignment (MSA) by ClustalΩ and T-coffee. Mutational variability of the sequences corresponding to the 3D structure (pdb: 2vev) was analyzed with Consurf software. The comparative analysis by inhibitor docking to different models was made to confirm the suitability of models. As a result, the PTP1B or PTP non-receptor type 1 homologies show high conservativity where about 70% positions on primary structures are conserved. Within PTP domain (3-277), the most variable positions are 12, 13, 19 and 24 which is a part of the second aryl binding site. Moreover, there are important evolutional mutations that can change the conformation of the proteins, for instance, hydrophilic N139 changed to hydrophobic Gly (mPTP1B); E132 to proline in the hydrophobic core structure or Y46 to cystein in pTyr recognition loop. These variations/differences should be taken into account for rational inhibitor design and in choosing suitable animal models for drug testing and evaluation. Moreover, our study suggests critically potential models which are Heterocephalus glaber, Tupaia chinensis, Sus scrofa, and Rattus norvegicus in addition to the best one Macaca fascicularis. Among these models, the H.glaber and R.norvegicus are preferable over M.musculus thanks to their similarity in binding affinity and binding modes to investigated PTP1B inhibitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...